Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.329
Filtrar
1.
Front Immunol ; 15: 1347676, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590519

RESUMO

The gut-lung axis is critical during viral respiratory infections such as influenza. Gut dysbiosis during infection translates into a massive drop of microbially produced short-chain fatty acids (SCFAs). Among them, butyrate is important during influenza suggesting that microbiome-based therapeutics targeting butyrate might hold promises. The butyrate-producing bacterium Faecalibacterium duncaniae (formerly referred to as F. prausnitzii) is an emerging probiotic with several health-promoting characteristics. To investigate the potential effects of F. duncaniae on influenza outcomes, mice were gavaged with live F. duncaniae (A2-165 or I-4574 strains) five days before infection. Supplementation of F. duncaniae was associated with less severe disease, a lower pulmonary viral load, and lower levels of lung inflammation. F. duncaniae supplementation impacted on gut dysbiosis induced by infection, as assessed by 16S rRNA sequencing. Interestingly, F. duncaniae administration was associated with a recovery in levels of SCFAs (including butyrate) in infected animals. The live form of F. duncaniae was more potent that the pasteurized form in improving influenza outcomes. Lastly, F. duncaniae partially protected against secondary (systemic) bacterial infection. We conclude that F. duncaniae might serve as a novel next generation probiotic against acute viral respiratory diseases.


Assuntos
Influenza Humana , Probióticos , Camundongos , Animais , Humanos , Disbiose/microbiologia , RNA Ribossômico 16S/genética , Ácidos Graxos Voláteis , Butiratos , Faecalibacterium/genética
2.
BMC Microbiol ; 24(1): 112, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575862

RESUMO

BACKGROUND: Postpartum women often experience stress urinary incontinence (SUI) and vaginal microbial dysbiosis, which seriously affect women's physical and mental health. Understanding the relationship between SUI and vaginal microbiota composition may help to prevent vaginal diseases, but research on the potential association between these conditions is limited. RESULTS: This study employed 16S rRNA gene sequencing to explore the association between SUI and vaginal dysbiosis. In terms of the vaginal microbiota, both species richness and evenness were significantly higher in the SUI group. Additionally, the results of NMDS and species composition indicated that there were differences in the composition of the vaginal microbiota between the two groups. Specifically, compared to postpartum women without SUI (Non-SUI), the relative abundance of bacteria associated with bacterial dysbiosis, such as Streptococcus, Prevotella, Dialister, and Veillonella, showed an increase, while the relative abundance of Lactobacillus decreased in SUI patients. Furthermore, the vaginal microbial co-occurrence network of SUI patients displayed higher connectivity, complexity, and clustering. CONCLUSION: The study highlights the role of Lactobacillus in maintaining vaginal microbial homeostasis. It found a correlation between SUI and vaginal microbiota, indicating an increased risk of vaginal dysbiosis. The findings could enhance our understanding of the relationship between SUI and vaginal dysbiosis in postpartum women, providing valuable insights for preventing bacterial vaginal diseases and improving women's health.


Assuntos
Microbiota , Incontinência Urinária por Estresse , Doenças Vaginais , Feminino , Humanos , Incontinência Urinária por Estresse/etiologia , Disbiose/microbiologia , RNA Ribossômico 16S/genética , Vagina/microbiologia , Microbiota/genética , Lactobacillus/genética , Bactérias/genética , Doenças Vaginais/complicações
3.
Nutrients ; 16(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474715

RESUMO

Gut dysbiosis refers to an imbalance in gut microbiota composition and function. Opuntia ficus-indica extract has been shown to modulate gut microbiota by improving SCFA production in vivo and gastrointestinal discomfort (GD) in humans. The aim of this study was to demonstrate the efficacy of OdiliaTM on gastrointestinal health by changing the microbial diversity of species involved in inflammation, immunity, oxidation, and the brain-gut-muscle axis. A randomized, double-blind clinical trial was conducted in 80 adults with gut dysbiosis. The intervention consisted of a 300 mg daily intake of OdiliaTM (n = 40) or maltodextrin as a placebo (n = 40), administered for 8 weeks. Intervention effect was evaluated using 16S metagenomics and GIQLI/GSAS scores at baseline, at 4 and 8 weeks. Eight weeks of OdiliaTM supplementation positively modulates gut microbiota composition with a significant reduction in the Firmicutes to Bacteroidetes ratio (p = 0.0012). Relative abundances of beneficial bacteria (Bacteroides and Clostridium_XIVa) were significantly increased (p < 0.001), in contrast to a significant reduction in pro-inflammatory bacteria (p < 0.001). Accordingly, GIQLI and GSAS scores revealed successful improvement in GD. OdiliaTM may represent an effective and well-tolerated treatment in subjects with gut dysbiosis.


Assuntos
Opuntia , Prebióticos , Adulto , Humanos , Disbiose/microbiologia , Fezes/microbiologia , Bactérias , Método Duplo-Cego
4.
Gut Microbes ; 16(1): 2333483, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532703

RESUMO

Although the role of the intestinal microbiota in the pathogenesis of inflammatory bowel disease (IBD) is beyond debate, attempts to verify the causative role of IBD-associated dysbiosis have been limited to reports of promoting the disease in genetically susceptible mice or in chemically induced colitis. We aimed to further test the host response to fecal microbiome transplantation (FMT) from Crohn's disease patients on mucosal homeostasis in ex-germ-free (xGF) mice. We characterized and transferred fecal microbiota from healthy patients and patients with defined Crohn's ileocolitis (CD_L3) to germ-free mice and analyzed the resulting microbial and mucosal homeostasis by 16S profiling, shotgun metagenomics, histology, immunofluorescence (IF) and RNAseq analysis. We observed a markedly reduced engraftment of CD_L3 microbiome compared to healthy control microbiota. FMT from CD_L3 patients did not lead to ileitis but resulted in colitis with features consistent with CD: a discontinued pattern of colitis, more proximal colonic localization, enlarged isolated lymphoid follicles and/or tertiary lymphoid organ neogenesis, and a transcriptomic pattern consistent with epithelial reprograming and promotion of the Paneth cell-like signature in the proximal colon and immune dysregulation characteristic of CD. The observed inflammatory response was associated with persistently increased abundance of Ruminococcus gnavus, Erysipelatoclostridium ramosum, Faecalimonas umbilicate, Blautia hominis, Clostridium butyricum, and C. paraputrificum and unexpected growth of toxigenic C. difficile, which was below the detection level in the community used for inoculation. Our study provides the first evidence that the transfer of a dysbiotic community from CD patients can lead to spontaneous inflammatory changes in the colon of xGF mice and identifies a signature microbial community capable of promoting colonization of pathogenic and conditionally pathogenic bacteria.


Assuntos
Clostridioides difficile , Colite , Doença de Crohn , Microbioma Gastrointestinal , Microbiota , Humanos , Camundongos , Animais , Doença de Crohn/microbiologia , Transplante de Microbiota Fecal , Disbiose/microbiologia
5.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542216

RESUMO

Dysregulation of the gut microbiota and their metabolites is involved in the pathogenic process of intestinal diseases, and several pieces of evidence within the current literature have also highlighted a possible connection between the gut microbiota and the unfolding of inflammatory pathologies of the joints. This dysregulation is defined as the "gut-joint axis" and is based on the joint-gut interaction. It is widely recognized that the microbiota of the gut produce a variety of compounds, including enzymes, short-chain fatty acids, and metabolites. As a consequence, these proinflammatory compounds that bacteria produce, such as that of lipopolysaccharide, move from the "leaky gut" to the bloodstream, thereby leading to systemic inflammation which then reaches the joints, with consequences such as osteoarthritis, rheumatoid arthritis, and spondylarthritis. In this state-of-the-art research, the authors describe the connections between gut dysbiosis and osteoarthritis, rheumatoid arthritis, and spondylarthritis. Moreover, the diagnostic tools, outcome measures, and treatment options are elucidated. There is accumulating proof suggesting that the microbiota of the gut play an important part not only in immune-mediated, metabolic, and neurological illnesses but also in inflammatory joints. According to the authors, future studies should concentrate on developing innovative microbiota-targeted treatments and their effects on joint pathology as well as on organizing screening protocols to predict the onset of inflammatory joint disease based on gut dysbiosis.


Assuntos
Artrite Reumatoide , Microbioma Gastrointestinal , Osteoartrite , Espondilartrite , Humanos , Microbioma Gastrointestinal/fisiologia , Disbiose/microbiologia , Artrite Reumatoide/microbiologia
6.
J Gastrointestin Liver Dis ; 33(1): 30-36, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38554421

RESUMO

BACKGROUND AND AIMS: The mineral compound Luvos Healing Earth (LHE) is a commercially available remedy empirically used for a variety of gastrointestinal disorders. The aim of this study was to investigate the possible effect of prolonged LHE therapy on gut microbiota in healthy individuals and in patients with diarrhea-predominant irritable bowel syndrome (IBS-D). METHODS: In this prospective exploratory study, a total of 20 participants, including 12 healthy controls and 8 patients with IBS-D, received treatment with LHE (Magenfein Granulat, 1 sachet bid) for 6 weeks. Fecal samples were collected for microbiota analysis in the morning fasting state at regular intervals at 6 different timepoints: 2 weeks before starting therapy (Screen), and every 2 weeks during LHE therapy (V0-V3). Additionally, a follow-up visit was scheduled 4 weeks after the end of treatment (V4). Microbiota analysis was performed using the GA-map® Dysbiosis Test Lx v2. Dysbiosis Index, bacterial diversity, as well as the balance or imbalance of functionally important bacteria were assessed. RESULTS: The microbiota analysis revealed an overlap in gut microbiota profiles between healthy controls and patients with IBS-D. Bacterial communities were consistently stable during the entire treatment period, and no significant variations in composition were observed 4 weeks after the end of the therapeutic intervention. There was a remarkable stability of microbiota profiles over time within each individual and a high inter-individual variation. The majority of fecal samples exhibited profiles, reflecting an eubiotic state, with no significant changes in dysbiosis index, functional bacteria profiles, or bacterial diversity. CONCLUSION: Our findings indicate intraindividual resilience of microbiota consortia during the entire study period. Prolonged intake of LHE does not cause significant alterations in fecal microbiota profiles in healthy controls and patients with IBS-D. Luvos Healing Earth does not affect the stability of gut microbial diversity and bacterial functions.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Humanos , Síndrome do Intestino Irritável/diagnóstico , Síndrome do Intestino Irritável/complicações , Diarreia/diagnóstico , Diarreia/etiologia , Disbiose/complicações , Disbiose/microbiologia , Estudos Prospectivos , Fezes/microbiologia , Bactérias
7.
J Gastrointestin Liver Dis ; 33(1): 115-122, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554422

RESUMO

The role of gut microbiota in autoimmune disorders like multiple sclerosis is gaining attention. Multiple sclerosis is characterized by inflammation, demyelination, and neurodegeneration in the central nervous system. Alterations in gut microbiota have been linked to multiple sclerosis development, with decreased beneficial bacteria and increased harmful species. The gut-brain axis is a complex interface influencing bidirectional interactions between the gut and the brain. Dysbiosis, an imbalance in gut microbiota, has been associated with autoimmune diseases. The influence of gut microbiota in multiple sclerosis is reversible, making it a potential therapeutic target. Probiotics, prebiotics, and fecal microbiota transplantation have shown promise in multiple sclerosis treatment, with positive effects on inflammation and immune regulation. Immunoglobulin Y (IgY) supplements derived from chicken egg yolk have potential as nutraceuticals or dietary supplements. IgY technology has been effective against various infections, and studies have highlighted its role in modulating gut microbiota and immune responses. Clinical trials using IgY supplements in multiple sclerosis are limited but have shown positive outcomes, including reduced symptoms, and altered immune responses. Future research directions involve understanding the mechanisms of IgY's interaction with gut microbiota, optimal dosage determination, and long-term safety assessments. Combining IgY therapy with other interventions and investigating correlations between microbiota changes and clinical outcomes are potential avenues for advancing multiple sclerosis treatment with IgY supplements.


Assuntos
Doenças Autoimunes , Imunoglobulinas , Esclerose Múltipla , Probióticos , Humanos , Esclerose Múltipla/terapia , Disbiose/microbiologia , Disbiose/terapia , Suplementos Nutricionais/efeitos adversos , Probióticos/uso terapêutico , Inflamação
8.
Nutrition ; 122: 112372, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38428218

RESUMO

OBJECTIVES: Aging and excessive fat intake may additively induce dysbiosis of the gut microbiota and intestinal inflammatory damage. Here, we analyzed microbiota dysbiosis and intestinal injury in high-fat diet-loaded senescence-accelerated mice (SAMP8). Additionally, we examined whether treatment with molecular hydrogen could improve the intestinal environment. METHODS: SAMP8 and SAMR1 (control) mice were first fed a normal diet (ND) or high-fat diet (HFD) for 10 wk (n = 10 each group). Subsequently, HFD was supplemented with a placebo jelly or hydrogen-rich jelly (HRJ) for 4 wk. After treatment, isolated small intestinal tissues were used for hematoxylin and eosin staining, immunofluorescence staining, and thiobarbituric acid reactive substances (TBARS) assay. Furthermore, we analyzed alterations in the microbiota composition in cecal feces using 16S rRNA gene analysis for microbiota profiling. Statistical analyses were performed using unpaired Student's t tests or one-way analysis of variance and Tukey's post hoc test for multiple comparisons. RESULT: HFD feeding reduced the expression of caudal-related homeobox transcription factor 2 (CDX2) and 5-bromo-2'-deoxyuridine (BrdU) and enhanced malondialdehyde (MDA) levels in the small intestine of SAMP8. HRJ treatment improved the reduction in CDX2 and BrdU and enhanced MDA levels. We performed a sequence analysis of the gut microbiota at the genus level and identified 283 different bacterial genera from the 30 samples analyzed in the study. Among them, Parvibacter positively correlated with both HFD intake and aging, whereas 10 bacteria, including Anaerofustis, Anaerosporobacter, Butyricicoccus, and Ruminococcus were negatively correlated with both HFD and aging. HRJ treatment increased Lactinobactor and decreased Akkermansia, Gracilibacter, and Marvinbryantia abundance. CONCLUSION: Our findings suggest that treatment with molecular hydrogen may affect microbiota profiling and suppress intestinal injury in HFD-loaded SAMP8.


Assuntos
Dieta Hiperlipídica , Enteropatias , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Disbiose/microbiologia , RNA Ribossômico 16S/genética , Bromodesoxiuridina/uso terapêutico , Intestino Delgado/metabolismo , Enteropatias/tratamento farmacológico , Enteropatias/etiologia , Camundongos Endogâmicos C57BL
9.
Genomics ; 116(2): 110816, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38431030

RESUMO

BACKGROUND: Changes in oral microbiota composition (dysbiosis) have long been known to play a key role in the pathogenesis of oral and systemic diseases including respiratory diseases. However, till now, no study has assessed changes in oral microbiota following tuberculosis (TB) infection in humans. AIMS: This is the first study of its kind that aimed to investigate oral microbial dysbiosis in newly diagnosed, treatment naïve, TB patients. METHODS: Oral swab samples were collected from newly diagnosed TB patients (n = 20) and age, gender and ethnicity matched healthy controls (n = 10). DNA was extracted and microbiota analyzed by sequencing the hypervariable (V3-V4) region of the bacterial 16S rRNA gene using Illumina MiSeq platform. Bioinformatics and statistical analyses were performed using QIIME and R. RESULTS: Bacterial richness, diversity and community composition were significantly different between TB patients and healthy controls. The two groups also exhibit differential abundance at phylum, class, genus and species levels. LEfSe analysis revealed enrichment (LDA scores (log10) >2, P < 0.05) of Firmicutes (especially Streptococcus) and Actinobacteriota (especially Rothia) in TB patients relative to healthy controls. Gene function prediction analysis showed upregulation of metabolic pathways related to carbohydrates (butanoate, galactose) and fatty acids metabolism, antibiotics biosynthesis, proteosome and immune system signaling. CONCLUSION: These observations suggest significant variations in diversity, relative abundance and functional potential of oral microbiota of TB patients compared to healthy controls thereby suggesting potential role of oral bacterial dysbiosis in TB pathogenesis. However, longitudinal studies using powerful metagenomic and transcriptomic approaches are crucial to more fully understand and confrim these findings.


Assuntos
Microbiota , Tuberculose , Humanos , Projetos Piloto , Disbiose/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética
10.
Microbiome ; 12(1): 59, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504383

RESUMO

BACKGROUND: The host-microbiota interaction plays a crucial role in maintaining homeostasis and disease susceptibility, and microbial tryptophan metabolites are potent modulators of host physiology. However, whether and how these metabolites mediate host-microbiota interactions, particularly in terms of inter-microbial communication, remains unclear. RESULTS: Here, we have demonstrated that indole-3-lactic acid (ILA) is a key molecule produced by Lactobacillus in protecting against intestinal inflammation and correcting microbial dysbiosis. Specifically, Lactobacillus metabolizes tryptophan into ILA, thereby augmenting the expression of key bacterial enzymes implicated in tryptophan metabolism, leading to the synthesis of other indole derivatives including indole-3-propionic acid (IPA) and indole-3-acetic acid (IAA). Notably, ILA, IPA, and IAA possess the ability to mitigate intestinal inflammation and modulate the gut microbiota in both DSS-induced and IL-10-/- spontaneous colitis models. ILA increases the abundance of tryptophan-metabolizing bacteria (e.g., Clostridium), as well as the mRNA expression of acyl-CoA dehydrogenase and indolelactate dehydrogenase in vivo and in vitro, resulting in an augmented production of IPA and IAA. Furthermore, a mutant strain of Lactobacillus fails to protect against inflammation and producing other derivatives. ILA-mediated microbial cross-feeding was microbiota-dependent and specifically enhanced indole derivatives production under conditions of dysbiosis induced by Citrobacter rodentium or DSS, but not of microbiota disruption with antibiotics. CONCLUSION: Taken together, we highlight mechanisms by which microbiome-host crosstalk cooperatively control intestinal homoeostasis through microbiota-derived indoles mediating the inter-microbial communication. These findings may contribute to the development of microbiota-derived metabolites or targeted "postbiotic" as potential interventions for the treatment or prevention of dysbiosis-driven diseases. Video Abstract.


Assuntos
Microbiota , Triptofano , Humanos , Triptofano/metabolismo , Disbiose/microbiologia , Indóis/farmacologia , Bactérias/genética , Bactérias/metabolismo , Inflamação
11.
Cancer Med ; 13(4): e6865, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38457257

RESUMO

Radiation enteropathy (RE) is common in patients treated with radiotherapy for pelvic-abdominal cancers. Accumulating data indicate that gut commensal bacteria determine intestinal radiosensitivity. Radiotherapy can result in gut bacterial dysbiosis. Gut bacterial dysbiosis contributes to the pathogenesis of RE. Mild to moderate depressive symptoms can be observed in patients with RE in clinical settings; however, the rate of these symptoms has not been reported. Studies have demonstrated that gut bacterial dysbiosis induces depression. In the state of comorbidity, RE and depression may be understood as local and abscopal manifestations of gut bacterial disorders. The ability of comorbid depression to worsen inflammatory bowel disease (IBD) has long been demonstrated and is associated with dysfunction of cholinergic neural anti-inflammatory pathways. There is a lack of direct evidence for RE comorbid with depression. It is widely accepted that RE shares similar pathophysiologic mechanisms with IBD. Therefore, we may be able to draw on the findings of the relationship between IBD and depression. This review will explore the relationship between gut bacteria, RE, and depression in light of the available evidence and indicate a method for investigating the mechanisms of RE combined with depression. We will also describe new developments in the treatment of RE with probiotics, prebiotics, and fecal microbial transplantation.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Disbiose/microbiologia , Depressão/etiologia , Bactérias
12.
Crit Care ; 28(1): 71, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454447

RESUMO

It has been convincingly demonstrated in recent years that isolated acute brain injury (ABI) may cause severe dysfunction of peripheral extracranial organs and systems. Of all potential target organs and systems, the lung appears to be the most vulnerable to damage after ABI. The pathophysiology of the bidirectional brain-lung interactions is multifactorial and involves inflammatory cascades, immune suppression, and dysfunction of the autonomic system. Indeed, the systemic effects of inflammatory mediators in patients with ABI create a systemic inflammatory environment ("first hit") that makes extracranial organs vulnerable to secondary procedures that enhance inflammation, such as mechanical ventilation (MV), surgery, and infections ("second hit"). Moreover, accumulating evidence supports the knowledge that gut microbiota constitutes a critical superorganism and an organ on its own, potentially modifying various physiological functions of the host. Furthermore, experimental and clinical data suggest the existence of a communication network among the brain, gastrointestinal tract, and its microbiome, which appears to regulate immune responses, gastrointestinal function, brain function, behavior, and stress responses, also named the "gut-microbiome-brain axis." Additionally, recent research evidence has highlighted a crucial interplay between the intestinal microbiota and the lungs, referred to as the "gut-lung axis," in which alterations during critical illness could result in bacterial translocation, sustained inflammation, lung injury, and pulmonary fibrosis. In the present work, we aimed to further elucidate the pathophysiology of acute lung injury (ALI) in patients with ABI by attempting to develop the "double-hit" theory, proposing the "triple-hit" hypothesis, focused on the influence of the gut-lung axis on the lung. Particularly, we propose, in addition to sympathetic hyperactivity, blast theory, and double-hit theory, that dysbiosis and intestinal dysfunction in the context of ABI alter the gut-lung axis, resulting in the development or further aggravation of existing ALI, which constitutes the "third hit."


Assuntos
Lesão Pulmonar Aguda , Lesões Encefálicas , Microbioma Gastrointestinal , Humanos , Encéfalo , Inflamação , Lesões Encefálicas/complicações , Pulmão , Disbiose/microbiologia
13.
Int Immunopharmacol ; 131: 111867, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38493690

RESUMO

BACKGROUND: Dupilumab has demonstrate its potential to orchestrate inflammatory skin microenvironment, enhance skin barrier and shift skin microbiome dysbiosis, collectively contributing to clinical improvement in patients with atopic dermatitis (AD). As the second genome of human body, growing evidence suggests that the gut microbiome might relate to the host response to treatments. Little is known about the association between dupilumab treatment and gut microbiome in AD patients. OBJECTIVE: We aimed to characterize the gut microbiome among Chinese subjects with or without AD and determine the potential effect of dupilumab on the gut microbiome. RESULTS: The 16 s rRNA gene sequencing was conducted on 48 healthy controls (HC), 44 AD patients and 27 AD patients who received dupilumab for 16 weeks. Prior to treatment, we identified the changed beta-diversity, increased Firmicutes/Bacteroidetes ratio, decreased Bifidobacterium and expanded Faecalibacterium among the AD patients compared to HC. After 16 weeks of dupilumab treatment, gut microbiome dysbiosis of the AD patients improved with reversed beta-diversity, closer bacterial connections, increased colonization of Bifidobacterium, Ruminococcus gnavus, and Coprococcus, which were negatively correlated with disease severity indicators. This shift was largely independent of the degree of clinical improvement. Bacterial function analysis revealed further metabolic alterations following dupilumab treatment, including up-regulated expression of genes involved in the indole pathway of tryptophan metabolism, corroborated by quantitative UHPLC-MS/MS analysis. CONCLUSION: Dupilumab treatment tends to help shift the gut microbial dysbiosis in AD patients to a healthier state, along with improved intestinal tryptophan metabolism, suggesting the gut flora and its metabolites may mediate part of the synergistic therapeutic effects on the host.


Assuntos
Anticorpos Monoclonais Humanizados , Dermatite Atópica , Microbioma Gastrointestinal , Humanos , Dermatite Atópica/tratamento farmacológico , Microbioma Gastrointestinal/genética , Triptofano/uso terapêutico , Disbiose/microbiologia , Espectrometria de Massas em Tandem , China
14.
Front Cell Infect Microbiol ; 14: 1304218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352055

RESUMO

Objective: The current study sought to clarify the role of lysozyme-regulated gut microbiota and explored the potential therapeutic effects of lysozyme on ileum injury induced by severe traumatic brain injury (sTBI) and bacterial pneumonia in vivo and in vitro experiments. Methods: Male 6-8-week-old specific pathogen-free (SPF) C57BL/6 mice were randomly divided into Normal group (N), Sham group (S), sTBI group (T), sTBI + or Lysozyme-treated group (L), Normal + Lysozyme group (NL) and Sham group + Lysozyme group (SL). At the day 7 after establishment of the model, mice were anesthetized and the samples were collected. The microbiota in lungs and fresh contents of the ileocecum were analyzed. Lungs and distal ileum were used to detect the degree of injury. The number of Paneth cells and the expression level of lysozyme were assessed. The bacterial translocation was determined. Intestinal organoids culture and co-coculture system was used to test whether lysozyme remodels the intestinal barrier through the gut microbiota. Results: After oral administration of lysozyme, the intestinal microbiota is rebalanced, the composition of lung microbiota is restored, and translocation of intestinal bacteria is mitigated. Lysozyme administration reinstates lysozyme expression in Paneth cells, thereby reducing intestinal permeability, pathological score, apoptosis rate, and inflammation levels. The gut microbiota, including Oscillospira, Ruminococcus, Alistipes, Butyricicoccus, and Lactobacillus, play a crucial role in regulating and improving intestinal barrier damage and modulating Paneth cells in lysozyme-treated mice. A co-culture system comprising intestinal organoids and brain-derived proteins (BP), which demonstrated that the BP effectively downregulated the expression of lysozyme in intestinal organoids. However, supplementation of lysozyme to this co-culture system failed to restore its expression in intestinal organoids. Conclusion: The present study unveiled a virtuous cycle whereby oral administration of lysozyme restores Paneth cell's function, mitigates intestinal injury and bacterial translocation through the remodeling of gut microbiota.


Assuntos
Lesões Encefálicas Traumáticas , Microbioma Gastrointestinal , Masculino , Camundongos , Animais , Muramidase/metabolismo , Muramidase/farmacologia , Disbiose/microbiologia , Camundongos Endogâmicos C57BL , Íleo/patologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/microbiologia , Administração Oral
15.
Cancer Immunol Res ; 12(4): 427-439, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38315788

RESUMO

Recent research indicates that gut microbiota may be vital in the advancement of melanoma. In this study, we found that melanoma patients exhibited a distinct gut mycobiota structure compared with healthy participants. Candida albicans, Candida dubliniensis, and Neurospora crassa were more abundant in samples from patients with melanoma, whereas Saccharomyces cerevisiae and Debaryomyces hansenii were less abundant. During anti-PD-1 treatment, the relative amount of Malassezia restricta and C. albicans increased. A higher level of Saccharomyces paradoxus was associated with a positive response to anti-PD-1 treatment, whereas a higher level of Tetrapisispora blattae was associated with a lack of clinical benefits. High levels of M. restricta and C. albicans, elevated serum lactate dehydrogenase, and being overweight were linked to increased risk of melanoma progression and poorer response to anti-PD-1 treatment. Thus, this study has revealed melanoma-associated mycobiome dysbiosis, characterized by altered fungal composition and fungi species associated with a higher risk of melanoma progression, identifying a role for the gut mycobiome in melanoma progression.


Assuntos
Microbioma Gastrointestinal , Melanoma , Micobioma , Humanos , Fungos/fisiologia , Disbiose/microbiologia , Melanoma/tratamento farmacológico , Saccharomyces cerevisiae
16.
Microbiome ; 12(1): 31, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38383483

RESUMO

BACKGROUND: People living with HIV (PLWH), even when viral replication is controlled through antiretroviral therapy (ART), experience persistent inflammation. This inflammation is partly attributed to intestinal microbial dysbiosis and translocation, which may lead to non-AIDS-related aging-associated comorbidities. The extent to which living with HIV - influenced by the infection itself, ART usage, sexual orientation, or other associated factors - affects the biological age of the intestines is unclear. Furthermore, the role of microbial dysbiosis and translocation in the biological aging of PLWH remains to be elucidated. To investigate these uncertainties, we used a systems biology approach, analyzing colon and ileal biopsies, blood samples, and stool specimens from PLWH on ART and people living without HIV (PLWoH) as controls. RESULTS: PLWH exhibit accelerated biological aging in the colon, ileum, and blood, as measured by various epigenetic aging clocks, compared to PLWoH. Investigating the relationship between microbial translocation and biological aging, PLWH had decreased levels of tight junction proteins in the intestines, along with increased microbial translocation. This intestinal permeability correlated with faster biological aging and increased inflammation. When investigating the relationship between microbial dysbiosis and biological aging, the intestines of PLWH had higher abundance of specific pro-inflammatory bacteria, such as Catenibacterium and Prevotella. These bacteria correlated with accelerated biological aging. Conversely, the intestines of PLWH had lower abundance of bacteria known for producing the anti-inflammatory short-chain fatty acids, such as Subdoligranulum and Erysipelotrichaceae, and these bacteria were associated with slower biological aging. Correlation networks revealed significant links between specific microbial genera in the colon and ileum (but not in feces), increased aging, a rise in pro-inflammatory microbe-related metabolites (e.g., those in the tryptophan metabolism pathway), and a decrease in anti-inflammatory metabolites like hippuric acid. CONCLUSIONS: We identified specific microbial compositions and microbiota-related metabolic pathways that are intertwined with intestinal and systemic biological aging. This microbial signature of biological aging is likely reflecting various factors including the HIV infection itself, ART usage, sexual orientation, and other aspects associated with living with HIV. A deeper understanding of the mechanisms underlying these connections could offer potential strategies to mitigate accelerated aging and its associated health complications. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Infecções por HIV , Humanos , Feminino , Masculino , Infecções por HIV/tratamento farmacológico , Disbiose/microbiologia , Microbioma Gastrointestinal/genética , Intestinos/microbiologia , Envelhecimento , Bactérias/genética , Inflamação/microbiologia , Anti-Inflamatórios
17.
Gene ; 909: 148257, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38367851

RESUMO

BACKGROUND: Inflammatory Bowel Disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract with an unknown etiology. Although dysbiosis is implicated in its pathogenesis, deep sequencing and oral microbiota study in Chinese IBD patients is absent. AIM: To explore the role of oral / intestinal microbiota in patients with IBD and the potential associations therein. METHODS: Clinical data, fecal and saliva samples were harvested from 80 patients with IBD (Crohn's disease, CD, n = 69; Ulcerative colitis, UC, n = 11) and 24 normal controls. Microbiomics (16S rRNA sequencing and 16S rRNA full-length sequencing) were used to detect and analyze the difference between IBD patients and normal control. RESULTS: Compared with normal controls, a higher abundance of the intestinal Shigella spp. (Shigella flexneri and Shigella sonnei, which were positively relate to the severity of IBD), lower abundance of intestinal probiotics (Prevotella, Faecalibacterium and Roseburia), and higher abundance of oral Neisseria were present in IBD patients with microbiome. The higher inflammation-related markers, impaired hepatic and renal function, and dyslipidaemia were present in patients with IBD. A higher intake of red meat and increased abundance of Clostridium in the gut were found in CD patients, while the elevated abundance of Ruminococcus in the gut was showed in UC ones. The bacterial composition of saliva and fecal samples was completely different, yet there was some correlation in the distribution of dominant probiotics. CONCLUSION: Enteric dysbacteriosis and the infections of pathogenic bacteria (Shigella) may associate with the occurrence or development of IBD.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Microbiota , Humanos , RNA Ribossômico 16S/genética , Fezes/microbiologia , Disbiose/microbiologia
18.
Sci Rep ; 14(1): 2819, 2024 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-38307921

RESUMO

Viruses are a key component of the colon microbiome, but the relationship between virome and colorectal cancer (CRC) remains poorly understood. We seek to identify alterations in the viral community that is characteristic of CRC and examine if they persist after surgery. Forty-nine fecal samples from 25 non-cancer (NC) individuals and 12 CRC patients, before and 6-months after surgery, were collected for metagenomic analysis. The fecal virome of CRC patients demonstrated an increased network connectivity as compared to NC individuals. Co-exclusion of influential viruses to bacterial species associated with healthy gut status was observed in CRC, suggesting an altered virome induced a change in the healthy gut bacteriome. Network analysis revealed lower connectivity within the virome and trans-kingdom interactions in NC. After surgery, the number of strong correlations decreased for trans-kingdom and within the bacteria and virome networks, indicating lower connectivity within the microbiome. Some co-occurrence patterns between dominant viruses and bacteria were also lost after surgery, suggesting a possible return to the healthy state of gut microbiome. Microbial signatures characteristic of CRC include an altered virome besides an altered bacterial composition. Elevated viral correlations and network connectivity were observed in CRC patients relative to healthy individuals, alongside distinct changes in the cross-kingdom correlation network unique to CRC patients. Some patterns of dysbiosis persist after surgery. Future studies should seek to verify if dysbiosis truly persists after surgery in a larger sample size with microbiome data collected at various time points after surgery to explore if there is field-change in the remaining colon, as well as to examine if persistent dysbiosis correlates with patient outcomes.


Assuntos
Neoplasias Colorretais , Microbiota , Vírus , Humanos , Viroma , Disbiose/microbiologia , Neoplasias Colorretais/cirurgia , Neoplasias Colorretais/microbiologia
19.
Microbiol Spectr ; 12(3): e0307823, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38353551

RESUMO

An increasing amount of evidence has linked critical illness with dysbiotic microbiome signatures in different body sites. The disturbance of the indigenous microbiota structures has been further associated with disease severity and outcome and has been suggested to pose an additional risk for complications in intensive care units (ICUs), including hospital-acquired infections. A better understanding of the microbial dysbiosis in critical illness might thus help to develop strategies for the prevention of such complications. While most of the studies addressing microbiome changes in ICU patients have focused on the gut, the lung, or the oral cavity, little is known about the microbial communities on the skin of ICU patients. Since the skin is the outermost organ and the first immune barrier against pathogens, its microbiome might play an important role in the risk management for critically ill patients. This observational study characterizes the skin microbiome in ICU patients covering five different body sites at the time of admission. Our results show a profound dysbiosis on the skin of critically ill patients, which is characterized by a loss of site specificity and an overrepresentation of gut bacteria on all skin sites when compared to a healthy group. This study opens a new avenue for further investigations on the effect of skin dysbiosis in the ICU setting and points out the need of strategies for the management of dysbiosis in critically ill patients.IMPORTANCEUnbalanced gut microbiota in critically ill patients has been associated with poor outcome and complications during the intensive care unit (ICU) stay. Whether the disturbance of the microbial communities in these patients is extensive for other body sites, such as the skin, is largely unknown. The skin not only is the largest organ of the body but also serves as the first immune barrier against potential pathogens. This study characterized the skin microbiota on five different body sites in ICU patients at the time of admission. The observed disturbance of the bacterial communities might help to develop new strategies in the risk management of critically ill patients.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Estado Terminal , Disbiose/microbiologia , Bactérias
20.
Indian J Gastroenterol ; 43(1): 112-128, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409485

RESUMO

Inflammatory bowel disease (IBD) is an immune mediated chronic inflammatory disorder of gastrointestinal tract, which has underlying multifactorial pathogenic determinants such as environmental factors, susceptibility genes, gut microbial dysbiosis and a dysregulated immune response. Human gut is a frequent inhabitant of complex microbial ecosystem encompassing bacteria, viruses, parasites, fungi and other microorganisms that have an undisputable role in maintaining balanced homeostasis. All of these microbes interact with immune system and affect human gut physiology either directly or indirectly with interaction of each other. Intestinal fungi represent a smaller but crucial component of the human gut microbiome. Besides interaction with bacteriome and virome, it helps in balancing homoeostasis between pathophysiological and physiological processes, which is often dysregulated in patients with IBD. Understanding of gut mycobiome and its clinical implications are still in in its infancy as opposed to bacterial component of gut microbiome, which is more often focused. Modulation of gut mycobiome represents a novel and promising strategy in the management of patients with IBD. Emerging mycobiome-based therapies such as diet interventions, fecal microbiota transplantation (FMT), probiotics (both fungal and bacterial strains) and antifungals exhibit substantial effects in calibrating the gut mycobiome and restoring dysbalanced immune homeostasis by restoring the core gut mycobiome. In this review, we summarized compositional and functional diversity of the gut mycobiome in healthy individuals and patients with IBD, gut mycobiome dysbiosis in patients with IBD, host immune-fungal interactions and therapeutic role of modulation of intestinal fungi in patients with IBD.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Micobioma , Humanos , Micobioma/fisiologia , Disbiose/terapia , Disbiose/microbiologia , Ecossistema , Doenças Inflamatórias Intestinais/terapia , Doenças Inflamatórias Intestinais/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...